I RESIDUI DI PRODOTTI FITOSANITARI NEI SEDIMENTI: INDICE DI PRIORITA' PER LA SCELTA DEI PRINCIPI ATTIVI E MESSA A PUNTO DI UN METODO ANALITICO MULTIRESIDUO.

Elena Gaggelli*, Federico Luchi*, Giovanni Mirarchi

- * Università degli studi di Siena Dipartimento di Chimica
- # Agenzia regionale protezione ambientale toscana Dip.Prov.le di Siena

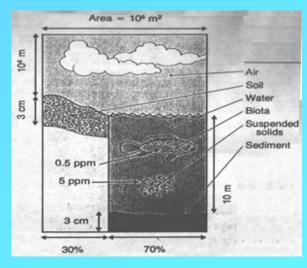
DEFINIZIONE DEL PROBLEMA

Uno dei problemi che frequentemente si pongono al chimico analitico che effettua analisi di monitoraggio ambientale di prodotti fitosanitari è quello della **scelta dei principi attivi ricercare**, fra le circa diecimila sostanze utilizzate in agricoltura, in una specifica matrice ambientale.

SOLUZIONE PROPOSTA

In questo lavoro è suggerito un **criterio per la scelta** dei composti da ricercare nella matrice sedimenti ed è messo a punto un **metodo analitico multiresiduo** per alcuni dei principi attivi suggeriti dall'indice stesso.

INDICE DI PRIORITA'


Per calcolare l'indice di priorità è stato costruito un software dedicato su un foglio di lavoro excel dove sono inseriti in input:

- Quantità in massa di ogni principio attivo venduto nel territorio in esame durante l'anno (in questo lavoro: Provincia di Siena, anno 2000)
- Principali costanti chimico fisiche, per ogni principio attivo, necessarie per l'applicazione del Modello Mackay I° livello (peso molecolare, tensione di vapore, solubilità in acqua, coefficiente di ripartizione ottanolo/acqua Kow)

La fugacità è definita come la tendenza di una molecola a sfuggire da una fase, espressa in termini di pressione parziale esercitata dalla sostanza.

Il primo livello Mackay assume che, in un sistema chiuso in condizioni stazionarie, dove non avvengono reazioni di degradazione, la fugacità di un componente è la stessa in tutte le fasi che compongono il sistema. Per calcolare la distribuzione del composto nelle varie fasi definisce una "unità di mondo", pari a circa 1/500.000.000 della biosfera i cui volumi sono i seguenti:

aria 10^{10} m³ suolo 9 10^{3} m³ acqua 7 10^{6} m³ biota 3.5m³ solidi sospesi 35m³ sedimenti 2.1 10^{4} m³

Introdotte M moli di contaminante nel sistema composto da n fasi, avremo la sua ripartizione nel seguente modo:

$$M = C_1V_1 + C_2V_2 + C_3V_3 + + C_nV_n = \Sigma C_iV_i$$

ogni concentrazione può essere espressa come $C_i = Z_i f_i$ (dove Z è la capacità di fugacità) e tutte le f_i all'equilibrio sono uguali, quindi:

$$f = M/ \Sigma V_i Z_i$$

la moltiplicazione della fugacità per la capacità di fugacità Z (calcolata in modo diverso per ogni fase) fornisce la concentrazione in ogni fase, se M = 100 si ottiene un valore percentuale:

$$C_{\text{fase}} = f Z_{\text{fase}}$$

Il calcolo di Z varia per ogni fase:

- a) Sostanza pura per una sostanza pura la fugacità f è uguale alla sua tensione di vapore del solido P^s ; se V_m è il suo volume molare (m³/gmol), $C = 1/V_m$, allora: $Z = C/f = 1/P^sV_m$
- b) Fase gassosa in fase gassosa la fugacità f corrisponde alla pressione parziale P; così dalla legge generale dei gas, se n è il numero di moli e V il volume occupato, si osserva che Z è costante per il comparto aria: Z = C/f = n/VP = 1/RT
- c) Fase liquida in fase liquida la fugacità è legata alla concentrazione tramite la costante di Henry, P = HC, ovvero all'equilibrio $H = P^s / s$, dove s è la solubilità e P^s la tensione di vapore della sostanza pura, quindi: $Z_w = 1/H = s/P^s$

d) Suolo, sedimenti, sedimenti sospesi – definito il coefficiente ripartizione sed/acqua K_p , se Φ è la frazione organica nel mezzo, assun mediamente pari a 0.04 per il sedimento e 0.02 per il suolo, assunto che Koc = 0.411Kow e che la densità terreno e del sedimento è 1,5 kg/l, è dat da $K_p = \Phi C_{sed}/C_w = \Phi Z_{sed}/Z_w$, avremo:

$$Z_{sed} = K_p \Phi/H = K_p \Phi/Z_w$$

e) Biota – Per gli organismi viventi, ricordando il fattore bioconcentrazione K_b , che è il rapporto fra concentrazioni della spec chimica nell'organismo vivente e nell'acqua, assunto che K_b =0.048 K_{ow} , che la densità del pesce è circa 1kg/l (Mackay, 1982), avremo:

$$Z_f = K_b/H = K_b/Z_w$$

RISULTATI MODELLO

MACKAY I° Livello

	PRINCIPIO ATTIVO	CTRL	AIR	WATER	SOIL	SEDIMENT	SUSP.SED.	FISH
С	TRIFLURALIN	100,0	0,0695	0,0111	0,1648	0,1546	0,0003	99,6001
С	TETRADIFON	100,0	0,0000	0,0510	0,1648	0,1545	0,0003	99,6297
С	PROPAQUIZAFOP	100,0	0,0000	0,0345	0,1648	0,1544	0,0003	99,6464
С	QUIZALOFOP-ETIL-ISOMER D	100,0	0,0000	0,0454	0,1647	0,1544	0,0003	99,6354
С	QUINALFOS	100,0	0,0002	0,0757	0,1647	0,1544	0,0003	99,6050
С	TEBUFENOZIDE	100,0	0,0000	0,1166	0,1647	0,1544	0,0003	99,5642
С	PERMETRINA (2P)	100,0	0,0001	0,0016	0,1648	0,1544	0,0003	99,6792
С	PENDIMETALIN	100,0	0,0185	0,0137	0,1647	0,1543	0,0003	99,6488
С	PROCLORAZ	100,0	0,0001	0,0865	0,1647	0,1543	0,0003	99,5945
С	OXADIAZON	100,0	0,0004	0,0329	0,1647	0,1543	0,0003	99,6477
С	OXIFLUORFEN	100,0	0,0026	0,0850	0,1646	0,1542	0,0003	99,5935
С	PIRIMIFOSMETILE	100,0	0,0029	0,1309	0,1646	0,1542	0,0003	99,5474
С	LUFENURON	100,0	0,0002	0,0158	0,1646	0,1541	0,0003	99,6653
С	FLOCOUMAFEN	100,0	0,0000	0,0414	0,1646	0,1541	0,0003	99,6399
С	TOLCLOFOSMETILE	100,0	0,3216	0,0570	0,1643	0,1541	0,0003	99,3031
С	FURATIOCARB	100,0	0,0000	0,0521	0,1645	0,1539	0,0003	99,6294
С	TEBUCONAZOLE	100,0	0,0000	0,4136	0,1642	0,1539	0,0003	99,2683
	omissis							

CALCOLO DELL'INDICE

L'indice di priorità è calcolato per ogni principio attivo mediante la semplice moltiplicazione del quantitativo venduto per la percentuale che il modello Mackay prevede destinata nella matrice di interesse:

INDICE DI PRIORITA' = Quantità (P.A.) * % Mackay Matrice

- L'indice di priorità ha una unità di massa perché rappresenta una stima del quantitativo inglobato nella matrice in questione.
- Questo indice nasce per poter confrontare l'importanza ambientale di ogni singolo principio attivo nella matrice considerata e nel territorio di competenza ed indirizzare conseguentemente la scelta su quali p.a. è necessario ricercare per un monitoraggio ambientale.

INDICE PRIORITA'

RISULTATI PER PROVINCIA DI SIENA ANNO 2000

PRINCIPIO ATTIVO	Quantità	Mackay	INDEX
	venduta	sedimenti	SEDIMENT
	(kg)	(%)	(kg)
MANCOZEB	31844,00	0,0782	2491,10
CLORTOLURON	3574,37	0,1441	515,20
MCPA	2755,56	0,1488	409,91
DINOCAP	2323,53	0,1536	356,91
ALACHLOR	2259,72	0,1523	344,18
DICLOFOPMETILE	2446,47	0,1156	282,76
TEBUCONAZOLE	1725,63	0,1539	265,62
OXIFLUORFEN	1442,62	0,1542	222,52
TERBUTILAZINA	1443,57	0,1517	219,00
FENITROTHION	1255,21	0,1527	191,62
METALAXYL	1527,06	0,1126	171,96
DIMETOMORF	1151,19	0,1466	168,71
PENDIMETALIN	959,56	0,1543	148,08
2,4-D	924,45	0,1490	137,71
PROCIMIDONE	869,32	0,1512	131,46
METOLACHLOR	852,73	0,1503	128,18
BROMOXINIL OTTANOATO	794,89	0,1535	122,02
AZINFOSMETILE	795,72	0,1499	119,29
PROCLORAZ	615,00	0,1543	94,90
ACLONIFEN	573,63	0,1532	87,86
TRALKOXIDIM	636,26	0,1327	84,45
ZIRAM	1392,24	0,0571	79,46
CIMOXANIL	2891,04	0,0258	74,65
PARATHION	469,50	0,1539	72,25
AZOXISTROBIN	476,93	0,1439	68,64

METODO ANALITICO MULTIRESIDUO

Il metodo messo a punto per i principi attivi antiparassitari OXIFLUORFEN, PENDIMETALIN, BROMOXINIL OTTANOATO, ALACLOR, TEBUCONAZOLE, PROCLORAZ, ACLONIFEN, FENITROTION, PARATION, TERBUTILAZINA, TRIFLURALIN, CLORPIRIFOS ETILE, BENFURACARB, PROCIMIDONE comprende le seguenti fasi:

- ESTRAZIONE dei P.A. mediante Accelerated Solvent Extraction
- PURIFICAZIONE dell'estratto con Gel Permeation Cromatography
- ANALISI con GC con rilevatori NPD/ECD e conferma con GC-MS

RISULTATI METODO ANALITICO MULTIRESIDUO

PRINCIPIO ATTIVO	D.L. gascrom.	Ripetibilità	Incert +/- t S	D.L.
	mg/L	$r = t S 2^{1/2} (ug/kg)$	ug/kg	Metodo
				ug/kg
OXIFLUORFEN	0.25	9,69	7	5
PENDIMETALIN	0.25	11,73	8	5
BROMOXINIL OTTANOATO	0.5	9,87	7	10
ALACLOR	0.5	8,15	6	10
TEBUCONAZOLE	0.5	11,05	8	10
PROCLORAZ	1.0	7,47	5	20
ACLONIFEN	1.0	11,11	8	20
FENITROTION	0.025	1,14	1	0.5
PARATION	0.025	1,50	1	0.5
TERBUTILAZINA	0.25	6,59	5	5
TRIFLURALIN	0.25	12,18	9	5
CLORPIRIFOS ETILE	0.025	1,15	1	0.5
BENFURACARB	0.5	50,29	35	10
PROCIMIDONE	0.5	12,37	9	10

CONCLUSIONI

INDICE DI PRIORITA'

Suggerisce quali composti ricercare all'interno di una classe di contaminanti per una data matrice ambientale.

La semplicità di calcolo e il basso numero di informazioni richieste in ingresso ne consentono una rapida applicazione in tutte le situazioni.

Il suo uso è indispensabile per mantenere un metodo analitico al passo con i tempi, ovvero allineato con la tipologia dei contaminanti immessi in quel periodo nel territorio di pertinenza.

METODO ANALITICO MULTIRESIDUO

Consente il monitoraggio ambientale dei pesticidi: OXIFLUORFEN, PENDIMETALIN, BROMOXINIL OTTANOATO, ALACLOR, TEBUCONAZOLE, PROCLORAZ, ACLONIFEN, FENITROTION, PARATION, TERBUTILAZINA, TRIFLURALIN, CLORPIRIFOS ETILE, BENFURACARB, PROCIMIDONE, nella matrice sedimenti.

PESTICIDA

è definita una sostanza attiva contro microrganismi, insetti, animali e piante dannosi per le attività umane (Organizzazione Mondiale della Sanità)

BINE

